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Abstract

Understanding plant responses to hydrological extremes is critical for projections of the future
terrestrial carbon uptake, but much more is known about the impacts of drought than of extreme
wet conditions. However, the latter may control ecosystem-scale photosynthesis more strongly than
the former in certain regions. Here we take a data-driven, location-based approach to evaluate
where wet and dry extremes most affect photosynthesis. By comparing the sensitivity of vegetation
greenness during extreme wetness to that during extreme dryness over a 34 year record, we find
that regions where the impact of wet extremes dominates are nearly as common as regions where
drought impacts dominate. We also demonstrate that the responses of wet-sensitive regions are not
uniform and are instead controlled by multiple, often interacting, mechanisms. Given predicted
increases in the frequency and intensity of extreme hydrological events with climate change, the
consequences of extreme wet conditions on local and global carbon cycling will likely be amplified

in future decades.

1. Introduction

Terrestrial carbon uptake by photosynthesis is
strongly influenced by climate (Friedlingstein et al
2006) and its extremes (Reichstein et al 2013). As the
climate warms, the hydrological cycle is intensify-
ing (Trenberth 2011), yielding shifts in the regimes
of extreme dry and extreme wet events (Seneviratne
et al 2012). Droughts are expected to become more
intense, spatially extensive, and temporally persist-
ent (Trenberth et al 2014), while an enhancement of
extreme wet precipitation has also been both projec-
ted (Fischer et al 2013) and observed (Donat et al
2016) on continental to global scales. To reduce
uncertainties in future projections of the carbon cycle
(Friedlingstein et al 2013), a robust understanding of
the feedbacks between extreme hydrological events
and terrestrial carbon uptake is crucial.

Because of this, the effects of droughts on growth
and photosynthesis have been studied extensively
(e.g. Farooq et al 2012, Schwalm et al 2017, Xu et al
2019). However, responses by vegetation to extreme
wet events are poorly understood by comparison.

© 2021 The Author(s). Published by IOP Publishing Ltd

One possible contributor to this knowledge gap is the
fact that, when globally averaged across the land sur-
face, the impacts of extreme dry events on productiv-
ity have been shown to dominate those of extreme
wet events (Zscheischler et al 2014). Such globally
integrated values, however, may not fully capture the
spectrum of relative impacts possible at any given
location. Droughts are significantly more spatially
coherent and less temporally transient than heavy
rainfall events, which may contribute to the greater
global impact of the former, regardless of which
extreme is more influential in individual regions.
Overall, whether vegetation in any particular
place is more sensitive to extreme wet events than to
extreme dry events remains unclear. This is a cru-
cial distinction because changes in the behavior of
extreme hydrological events are also projected to vary
regionally (albeit with high uncertainty (Trenberth
2011)). That is, different regions will experience dif-
ferent trends in extreme precipitation, with some
getting wetter and others drier. If hotspots of sensitiv-
ity to extreme wet events exist now, their future con-
sequences on local and global carbon cycling could be
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even more pronounced. Furthermore, understanding
how the vulnerability of different regions to hydro-
logical extremes varies may impact conservation or
management priorities.

Beyond the importance of extreme wet events
on sub-global scales, even the dominant sign of the
photosynthesis response under extreme wetness is
poorly quantified across the broader land surface. Sig-
nificant heterogeneity in both sign and magnitude
of the vegetation response to extreme wetness has
been observed at ecosystem scales (Heisler-White
et al 2008, Knapp et al 2008), indicating its depend-
ence on locally- and regionally-specific factors. A
multitude of processes can impact the response of
vegetation to extreme wet conditions. Some such
mechanisms may cause photosynthesis to increase
(e.g. by alleviating a moisture limitation or by mit-
igating heat-related stresses (Li et al 2019)), while
others may induce negative effects (e.g. associated
with the consequences of partial to complete flood-
ing (Bailey-Serres and Voesenek 2008, Garssen et al
2015)). Because a bottom-up study tracing each pro-
cess to its impact on carbon uptake is not feasible
given the data that is currently available, here we take
a top-down approach by first quantifying vegetation
responses during extreme wet conditions and then
inferring likely mechanisms that explain the observed
patterns.

This paper investigates regional variations in the
relative impacts of extreme wet events and extreme
dry events on vegetation. To do so, average vegetation
greenness anomalies (relative to the local climato-
logy) during periods of extremely high moisture were
compared to those during periods of extremely low
moisture by leveraging 34 years of satellite normal-
ized difference vegetation index (NDVI) data from
the Global Inventory Monitoring and Modeling Sys-
tem (GIMMS) alongside combined active and pass-
ive soil moisture observations from the European
Space Agency Climate Change Initiative (ESA CCI)
(see section 2). Although NDVI is a direct measure
of spectral reflectance, not photosynthesis (Tucker
1978), it is used here because of its long tem-
poral record, observational nature, and global spatial
coverage.

Specifically, in this paper we seek to answer the
following questions. (a) Across the vegetated land sur-
face, where is greenness more sensitive to extreme wet
events than it is to extreme dry events? (b) What con-
trols the sign of the resulting greenness change during
extreme wet events?

2. Methods

2.1. Data selection and processing

Two datasets derived from satellite remote sens-
ing were used to represent vegetation productiv-
ity and moisture conditions. These datasets were
selected on the basis of their (a) long temporal
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records (i.e. >30 vyears), (b) moderate-to-high
spatial resolutions, (c) global coverage, and (d)
observational nature (i.e. absence of assump-
tions about vegetation behavior embedded in the
datasets).

We used the GIMMS NDVI third generation data
product as a proxy for vegetation productivity. The
dataset is derived from Advanced Very High Resol-
ution Radiometer (AVHRR) imagery (Tucker et al
2005, Pinzon and Tucker 2014) and spans the period
July 1981-December 2015 at 1/12° spatial resolution
and bimonthly (15 d) composite temporal resolu-
tion. While NDVI is not a direct measure of pho-
tosynthesis, its dynamics capture changes in veget-
ation greenness (Tucker 1978), which are assumed
to indicate variations in productivity on a biweekly
timescale.

Next, we used soil moisture data—specifically,
the ESA CCI combined soil moisture product v04.4
(Dorigo et al 2017)—to describe moisture condi-
tions. The combined product incorporates both act-
ive scatterometer data and passive radiometer data
from a variety of sensors. It spans the period Novem-
ber 1978-June 2018 at 0.25° spatial resolution with
daily observations, although the observational dens-
ity of the product varies depending on the number of
sensors that are operational at any point in time. This
temporal frequency is a key advantage of the CCI soil
moisture product relative to monthly metrics such
as the standardized precipitation—evapotranspiration
index (Vicente-Serrano et al 2010), particularly in
the context of extreme wet events, which are often
shorter than extreme dry events. Although soil mois-
ture observed by microwave remote sensing repres-
ents near-surface conditions rather than the entire
root zone, which would be more informative of the
moisture conditions influencing vegetation, obser-
vational datasets of root-zone soil moisture are not
available at the global scale. The use of an observa-
tional dataset, in contrast to model-based products
(e.g. those from the Global Land Data Assimilation
System (GLDAS; Rodell et al 2004), ensures that the
effects of highly variable processes like infiltration on
soil moisture are correctly accounted for. Consistent
with other studies (e.g. Li et al 2019, Liu et al 2020,
Orth et al 2020), we considered surface soil mois-
ture informative because it tends to be well correl-
ated with that in deeper layers (McColl et al 2017).
Furthermore, because extreme wet events are unlikely
to occur in deeper layers without also being reflec-
ted in the surface, our approach is more likely to
identify false positives rather than false negatives and
is thus conservative with respect to the impact of wet
extremes.

To harmonize the soil moisture and NDVI data-
sets, we selected the period July 1981-December 2015
for analysis, linearly resampled the NDVI data to
0.25° spatial resolution and computed biweekly soil
moisture averages for comparison with NDVI. This
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Figure 1. Simplified schematic diagram of extreme event identification and NDVI anomaly computation. Top subplot shows an
example of a soil moisture time series (blue) along with its all-time threshold for wet events (solid black line, SMy(; see

section 2.2) and seasonally-varying threshold for wet events at each 2 week period t (dashed black line, SM¢ yet). Extreme wet
events, highlighted in light blue shading, occur when soil moisture observations surpass both thresholds SMye; and SMy et
Bottom subplot shows observed NDVI (green) along with the NDVI climatology, or average annual cycle (dashed black line; see
section 2.3). Differences between the two curves during extreme events (dark gray shading) represent NDVI anomalies used for

further analysis.

averaging procedure also led to smoothing of the
noise in the soil moisture observations.

Vegetation responses to periods of extreme mois-
ture were also compared to several climatic and
vegetation factors. These variables included air
temperature and shortwave radiation from the 5th
generation European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis of the
global climate (ERAS5; Hersbach et al 2020); poten-
tial evapotranspiration (PET) and rainfall rate from
GLDAS; an index of aridity (the ratio of precipita-
tion to PET) based on WorldClim 2.0 data (Trabucco
and Zomer 2019); and leaf area index (LAI) clima-
tology from GIMMS (Mao and Yan 2019). Vapor
pressure deficit (VPD) was computed using the
Roche-Magnus equation.

2.2. Isolating extreme moisture events

We implemented two concurrent thresholds to isol-
ate extreme soil moisture events at each pixel: (a) an
‘all-time’ threshold ensuring that events are extreme
relative to the entire record of observation; and (b) a
seasonally-varying threshold ensuring they are such
relative to their date of occurrence. The soil moisture
time series shown in figure 1 demonstrates this identi-
fication procedure, using wet extremes as an example.

3

To compute the all-time thresholds, a percentile-
based cutoff for extreme dry events (SMgr,) and
one for extreme wet events (SM,,.;) were determ-
ined for each pixel using its full soil moisture time
series. SMyry, was equivalent to the soil moisture
value at a chosen percentile p and SM,,; was equi-
valent to that at 100 — p. In the main figures
of this paper, p was set to 15 to ensure a suf-
ficient sample size, although we tested the effects
of several increasingly extreme values of p in a
sensitivity analysis. Figure S1 (available online at
stacks.iop.org/ERL/16/074014/mmedia) shows that
our main results remain consistent across several
choices of p.

To ensure that events identified as extreme based
on SMyyy, and SM,, were not biased towards that
pixel’s driest and wettest seasons, we further imposed
seasonally-varying thresholds to determine whether
they were also extreme relative to their time of year.
We computed dry-event and wet-event seasonally-
varying thresholds for each 2 week period (¢) of the
year by assuming a Gaussian distribution of the inter-
annual values of soil moisture. This approach dif-
fers slightly from that used to calculate the all-time
thresholds because of the reduced number of obser-
vations available when only a certain time of year is
considered. The seasonally-varying threshold for dry
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events (SM; 4ry) and that for wet events (SM; ) were
calculated as:

SMt,dry = M — |Z| * Ot

SMt,wet =l + |Z| ‘Ot

where p; is the climatological average soil moisture
at time ¢, z is the z-score corresponding to percentile
p (e.g. |z] = 1.04 for p = 15), and o is the standard
deviation of observations yielding the climatology at
timestep t.

To summarize, events identified as extreme using
the all-time method were ultimately accepted only if
they were also classified as such using the seasonally-
varying method. That is, all soil moisture observa-
tions that fell below both SMy,y, and SM, 4, were
identified as extreme dry events and included in our
analysis, and all that exceeded both SMy,r and SMy, yet
were classified as extreme wet events (figure 1) and
included. We note that regions for which soil mois-
ture data were unavailable were necessarily excluded
from the analysis.

We repeated the same extreme event classification
procedure for both the radiation and temperature
data. In order to ensure the events considered primar-
ily reflected responses to hydrological rather than
other climatic factors, any soil moisture extreme that
co-occurred with a temperature or radiation extreme
(22.9% of dry extremes and 19.0% of wet extremes)
was removed from the analysis.

2.3. Identifying growing seasons from NDVI data
To identify growing seasons from the NDVI time
series at each pixel, we first computed the NDVI cli-
matology by averaging observations for each 2 week
period across all years. This climatology represents
the pixel’s average annual cycle of NDVI. For each
year, we identified the growing season as those values
exceeding (NDVI.x- NDVIi,) /2, where NDVIj,ay
is the peak and NDVI,,;;;, is the minimum of the aver-
age seasonal cycle, respectively. This approach is sim-
ilar to previous efforts (White et al 1997, Vrieling et al
2013). Any soil moisture extreme that was identified
but did not occur in a pixel’s growing season was
removed from the analysis.

2.4. Computing average NDVI anomalies during
extreme moisture events

For every pixel, we computed the average NDVI
anomaly during extreme wet events (NDVIy) and
the average NDVI anomaly during extreme dry events
(NDVIp) in the following way:

>, (NDVL; — NDVT)

nw

NDVIy =

" (NDVI. — NDVI
NDVIp = 2]70 ( 7 J)

np
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where i are the timesteps during which a total of ny
extreme wet events occurred, j are the timesteps dur-
ing which a total of np extreme dry events occurred,
NDVI; and NDVI; are the NDVI observations at times
i and j, and NDVI; and NDVI; are the NDVT cli-
matological averages corresponding to times i and j.
Figure 1 shows how the extreme event identification
procedure maps to NDVI anomalies.

NDVIy and NDVI, were tested for statistical sig-
nificance (student’s t-test, p < 0.05) against all differ-
ences between observations and climatology over the
entire record. Only significant values were included in
the analysis.

2.5. Statistical comparison of distributions

We used the two-sample Kolmogorov—Smirnov test,
or K-S test, to evaluate the equality of continuous cli-
mate and vegetation-related distributions (in partic-
ular, those tested as potential explanatory factors dif-
ferentiating NDVIy from NDVIp; see last paragraph
of section 2.1). The test is used to assess whether
two samples are statistically indistinguishable from
one another (i.e. whether they were drawn from
the same distribution). It returns the Kolmogorov—
Smirnov statistic, which is the maximum distance
between the empirical cumulative distribution func-
tions of the two samples, as well as a p-value used
for significance testing. No normality assumptions
are required for its implementation. Theoretically,
two dissimilar distributions will be characterized by
a large Kolmogorov—Smirnov statistic, and two sim-
ilar ones will have a small Kolmogorov—Smirnov stat-
istic (figure S2). Here, results are included only for
Kolmogorov—Smirnov statistics that were significant
(p <0.05).

3. Results

3.1. Regional-scale sensitivity to extreme wet and
extreme dry events
Strong sensitivity hotspots exist for both wet and
dry extremes, indicating regions for which veget-
ation greenness anomalies are strongly coupled to
extreme hydrological events (figures 2(a) and (b)).
High-magnitude sensitivities to both extreme wet
events and extreme dry events appear in northeast-
ern Australia and southern Africa, while many north-
ern boreal regions are significantly sensitive only to
the former and parts of India are only to the latter.
For 11.6% of the vegetated global land surface,
average NDVI anomalies are larger in magnitude dur-
ing extreme wet events than they are during extreme
dry events (i.e. the absolute value of NDVTIyy exceeded
that of NDVIp), indicating a greater overall vegeta-
tion sensitivity to wetness than to dryness in those
regions (figure 2(c)). This fraction is only slightly
less than that for which NDVI is more sensitive to
extreme dry events (14.4%; the remaining 74.0% is
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Figure 2. Maps of NDVIy, NDVIp, and [NDVIw| — |[NDVIp|. (a) Average NDVI anomaly during extreme wet events (NDVIy).
(b) Average NDVI anomaly during extreme dry events (NDVIp). (c) Difference in magnitude between [INDVIy| and [NDVIp|.
Light gray pixels are not significant (student’s ¢-test, p > 0.05). Dark gray pixels contain missing soil moisture data (for example,
in tropical regions where dense vegetation can restrict the penetration of microwaves). Inset shows pixel frequencies. In panel (c),
differences are computed only using significant values.

either not statistically significant or contains miss- extreme events (figure S1) as well as when omit-

ing data (see inset of figure 2(c)). The near equival-
ence of these two fractions holds even when vary-
ing the soil moisture threshold used for identifying

ting agricultural regions from the analysis (figure S3),
since their greenness responses may be skewed by
irrigation use. Overall, this surprising result suggests
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Figure 3. Differences in climate and vegetation between NDVIyy pixels and NDVIp, pixels. A greater K-S statistic indicates more
distinct distributions. (a) Maximum difference between cumulative distribution functions (Kolmogorov—Smirnov statistic) of
NDVly pixels and NDVIp, pixels for all variables. Upward-pointing triangles indicate that the mean of the NDVIy distribution
for the given variable is greater than that of the NDVIp, distribution (e.g. NDVIw pixels have higher mean temperatures on
average than NDVIp pixels). Downward-pointing triangles indicate that the mean of the NDVIyy distribution is less than that of

the NDVIp distribution (e.g. NDVIy pixels have lower aridity i

ndices on average than NDVIp, pixels). Gray markers correspond

to climate variables; white markers correspond to vegetation variables. All K-S statistic values shown are statistically significant

(p <0.01). (b) Distributions of aridity index (largest K-S statist

ic) for the highest-magnitude NDVI pixels and NDVIp pixels.

Dashed lines correspond to the mean of each distribution. (¢) Distributions of mean precipitation (smallest K-S statistic) for the
highest-magnitude NDVIy pixels and NDVIp, pixels. Dashed lines correspond to the mean of each distribution.

that the spatial extents of the two types of vegetation
sensitivities are comparable. That is, when sampling
any specific location, it is almost as common for
greenness to be more sensitive to wet extremes than
to dry extremes.

Measures of average atmospheric moisture
demand conditions, including mean PET, mean
VPD, and the ratio of precipitation to PET (a com-
mon index of aridity), most strongly differentiate the
class of pixels with high-magnitude NDVIy from
those with high-magnitude NDVIp (figure 3(a)).
Specifically, pixels with the greatest sensitivity to
wet events are characterized by lower aridity indices
(figure 3(b); indicating PET far greater than the sup-
ply of water by precipitation), higher mean PET
(suggestive of a larger moisture gradient, and thus
a greater capacity for hydrologic exchange from
the land to the atmosphere), greater VPD, higher
radiation, and higher temperature than the most
drought-sensitive pixels (figure S4). Notably, neither
mean precipitation itself, nor precipitation variabil-
ity, are strong differentiators between the two types of
pixels (figure 3(c)), suggesting that moisture demand
exerts a greater control than moisture availability
over the spatial distribution of vegetation sensitivity

6

to hydrological extremes. These climate-based dis-
tinctions also dominate differences in average land
cover in their explanatory power. Mean LAl and mean
NDVI were relatively similar between the two types of
pixels, indicating representation from a broad range
of vegetation covers, although pixels with lower tem-
poral variability in NDVI tend to be more sensitive
to wet extremes. Taken together, these results high-
light the impacts of extreme hydrological events that
oppose a region’s dominant aridity regime, irrespect-
ive of its mean vegetation state, on greenness anom-
alies. Amid projections of enhanced wet extremes,
they also draw attention to the future role of arid
and semi-arid ecosystems in the global carbon cycle
(Poulter et al 2014, Ahlstrom et al 2015).

3.2. Sign of greenness change during extreme wet
events

3.2.1. Spatial patterns

In 41.4% of pixels with a statistically significant
response to extreme wetness, NDVI typically declines
relative to its climatology during periods of extremely
high moisture, while NDVI typically increases during
these periods in 58.6% of pixels (figure 4). Note that
for this analysis, we separated the subset of vegetated
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Figure 4. Map of NDVlIyy, colored by sign of response. Map of pixels with positive NDVIy (NDVI;; shown in teal) and negative

NDVIw (NDVIy;; shown in brown). Inset shows the frequency of pixels in each class (calculated relative to the pixels for which
NDVIw was significant at p < 0.05). Light gray pixels are not significant; dark gray pixels contain missing data.

pixels for which NDVIyy is positive (hereafter referred
to as NDVI;) from that for which it is negative
(hereafter referred to as NDVIy;) under extremely
high moisture. There are regionally coherent pat-
terns in the occurrence of NDVIy, and NDVI, pixels;
regions like eastern Australia and southern Africa are
dominated by NDVI, pixels, while NDVI;; pixels
account for large swaths of the northern high lat-
itudes (figure 4). Most NDVIy; pixels are arid or
semi-arid regions; they tend to be warmer and drier
than NDVI; pixels (figure S5), highlighting the abil-
ity of moisture-limited regions to translate even the
most extreme additions of moisture over the 34 years
record into increased greenness.

3.2.2. Event-scale controls on reduced greenness

While the analysis into spatial patterns largely
explains the occurrence of positive NDVI anomalies
during extreme wetness (i.e. they are predominantly
linked to moisture-limited regions), the mechanisms
contributing to reduced greenness during extreme
wet conditions are more difficult to elucidate. To bet-
ter understand such negative responses, we further
focused on the timescale of individual extreme events.
Though this approach inevitably includes significant
uncertainties because our study uses observational
data rather than controlled experiments, we identi-
fied two emergent patterns that may be interpreted as
promising avenues for further research.

First, negative NDVI anomalies during extreme
wet events tend to occur during growing seasons for
which NDVI is already lower than average (figure
S6(a)), suggesting that vegetation greenness was
already depressed relative to the local climatology
before the extreme event took place. This suggests that
the occurrence of the extreme event, and the response
by vegetation to it, may not be independent from
the preceding climate conditions that caused the low-
greenness observation. The magnitude of the NDVI

anomaly is still greater—on average—during the wet
extreme than before it, implying that this form of
short-term memory influences the anomaly response
but is not the sole cause.

Additionally, in some pixels, there is some evid-
ence to support the hypothesis that a negative green-
ness response may be explained by excessive soil sat-
uration, or waterlogging. Waterlogging can cause the
soil to become so saturated that the plant cannot
access enough oxygen to adequately respire (known
as soil hypoxia). Soil hypoxia can decrease stomatal
conductance and root hydraulic conductivity, among
other negative impacts on plant growth and soil prop-
erties (Parent et al 2008). It is difficult to explicitly
quantify the degree to which waterlogging occurs at a
global scale, however, because it is not known how the
soil moisture levels necessary to induce hypoxia vary
across the globe. Furthermore, biases in soil moisture
observations (Dorigo et al 2015) and global soil tex-
ture databases, which are likely a first order control
on soil moisture levels required for saturation, would
further complicate such an analysis.

As an indirect proxy for waterlogging, we con-
sidered different classes of extreme soil wetness,
stratified based on the local soil moisture distri-
bution. Across all pixels, wet extremes are distrib-
uted non-normally: that is, extremes occurring above
that pixel’s 95th percentile are more common than
extremes occurring between its 90th and 95th per-
centile, which in turn are more common than those in
the 85th-to-90th percentile class. Critically, however,
it is more likely for events occurring at the highest soil
moisture percentiles to yield decreased NDVI than to
yield increased NDVI (table S1). It is therefore pos-
sible that a higher fraction of the wet extremes associ-
ated with reduced greenness may occur during water-
logged conditions. The possible role of waterlogging
warrants further study as possible controls on the sign
of the response by vegetation to extreme wetness.
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4. Discussion

More attention to both types of extreme hydrological
events—droughts as well as heavy precipitation—
is needed to understand their impacts on vegeta-
tion now and in future decades. While which impact
is dominant varies greatly across the land surface
(figure 2(c)), many places exhibit significant sensitiv-
ities to both extreme wet and dry events (figures 2(a)
and (b)). The carbon balance of such regions is there-
fore a function of multiple, dynamically evolving
extreme event regimes. Coupled with the finding that
the spatial extents of the two types of sensitivities are
comparable, this contrasts with the significantly lar-
ger focus in the literature on dry, rather than wet,
events (e.g. Farooq et al 2012, Schwalm et al 2017, Xu
etal 2019).

The global distribution of NDVIy, and NDVI,
pixels demonstrated here aligns with prior work in
grasslands suggesting that the response by terrestrial
ecosystems to extreme rainfall events is highly nonlin-
ear (e.g. Heisler-White et al 2008, Knapp et al 2008).
However, our findings broaden the scope of such
work in two key ways. First, our data-driven study
indicates that bidirectional productivity responses
(i.e. that productivity can either increase or decrease
during extreme wetness) persist across far larger spa-
tial and temporal scales than previously captured by
field studies, and across biome types. Specifically,
they persist across the scales relevant to informing
and improving land surface models (which have been
shown, for instance, to misrepresent the growth leg-
acy effects of extreme wetness in many forests (Jiang
etal 2019).

Second, we observed that controls on the sign
of the greenness response under extreme wetness
are also more complex than previously demonstrated
under experimental conditions. While the observed
sensitivity of arid regions is generally linked to
average atmospheric moisture demand (figure 3),
other factors—beyond mean climate conditions—
may interact to impact the overall response by vegeta-
tion to extreme wetness in cases where greenness was
ultimately reduced.

For instance, we took steps to isolate the impacts
of extreme wet events on greenness (e.g. by only
considering events that did not co-occur with radi-
ation or temperature extremes; see section 2), but
still found an inextricable effect of prior climate on
both the magnitude and sensitivity of the vegeta-
tion response (figure S6). While previous work has
focused on ‘legacy effects’ of extreme hydrological
events on carbon fluxes (i.e. given an extreme event,
how will vegetation respond in seasons to follow?)
(e.g. Anderegg et al 2015, Jiang et al 2019, Gao
et al 2020 at interannual timescales; or Schwalm
et al 2017, Kolus et al 2019 at monthly times-
cales), we also found evidence of the inverse caus-
ality (a given prior vegetation anomaly exerts some
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control over its response to a later extreme wet
event).

In particular, below-average carbon uptake—
which may result from shifts in average temperature,
cloud cover, or precipitation patterns diminishing
photosynthetic rates—appears to affect the further
depression of greenness during subsequent extreme
wet conditions. A similar dynamic was identified by
Randazzo et al (2020) in the context of linking synop-
tic meteorology to North American ecosystem carbon
exchange at the site scale. It remains unclear, how-
ever, which prior climate conditions—and over what
timescales—are most significant in affecting vegeta-
tion responses to later extreme wet events.

An additional limitation in understanding the
tradeoffs between mechanisms controlling reduced
greenness under extreme rainfall is the challenge
of predicting where and when soil waterlogging,
along with possible hypoxic or anoxic conditions,
will occur. The occurrence of waterlogging and
its consequences on plant functioning depend on
both dynamic and static factors (including local and
regional hydrology, soil texture, and slope position),
and because of temporal gaps in soil moisture data
and uncertainty in soil properties, it is often difficult
to assess the prevalence of waterlogging directly at any
given location.

Some evidence points to high-latitude regions as
especially susceptible to over-saturated conditions. In
particular, the fact that we observed a greater like-
lihood for NDVI-suppressing events in the north-
ern high-latitudes (figure 4) is sensible given (a) the
region’s higher long-term average soil moisture rel-
ative to the consistently drier mid-latitudes (McColl
et al 2017), (b) shallow groundwater tables in the
region (Fan et al 2013), and (c) observations that in
some of the most extreme northern ecosystems, melt-
ing snow, ice, and permafrost can further increase soil
saturation (Turetsky et al 2007). Still, the properties
of waterlogging (e.g. duration, time of year, climato-
logical history) that most influence its effect on pro-
ductivity, and how the likelihood of waterlogging var-
ies through space and time across the land surface,
remain unclear.

5. Conclusions

Using 34 years of satellite data, we found that regions
more sensitive to extreme wet events than to extreme
dry events are more prevalent than previously recog-
nized. The greenness responses of those regions are
not uniform; they are functions of multiple, often
interacting, mechanisms (e.g. atmospheric moisture
demand, average and preceding climate conditions,
etc). Although regions where extreme wet events
significantly affect vegetation greenness are wide-
spread, the plant response to them remains poorly
understood. In particular, the processes that control
negative productivity responses to extreme wetness
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have not been studied in depth, and the relative
roles and interactions of factors such as soil prop-
erties (Li et al 2019), the duration of soil hypoxia
(Horchani et al 2008), or wind damage (Gardiner
et al 2016) are not known. Similarly, while pre-event
conditions influence the response to wet extremes
(figure S6), the magnitude, pathways, and prevalence
of that influence likely differ from region to region
or event to event. Additionally, although events for
which extreme soil moisture conditions coincide with
extremes in temperature or radiation were excluded
from this study, extreme wetness may also play an
important role in regulating vegetation productivity
during compound or co-occurring extremes (Zsche-
ischler and Seneviratne 2017, Zscheischler et al 2018).

To parse the dynamics controlling the response
to extreme wetness, future studies at higher spa-
tiotemporal resolutions than the long-term global
assessment here may benefit from recent advances
in remote sensing of photosynthesis such as solar-
induced fluorescence (Guanter et al 2014) or the
near-infrared reflectance of vegetation (Badgley et al
2017), which more directly relate to carbon uptake
than NDVI does. The increased study of extreme
wet events is likely to improve forecasts of vegetation
productivity, with further benefits for conservation,
resource management, timber logging, and the quan-
tification of ecosystem services.

Overall, the impacts of extreme hydrological
events on carbon uptake will likely strengthen in a
changing climate characterized by increasingly fre-
quent and intense wet and dry periods. While it is
possible that in some regions, the cumulative effects
of droughts and extreme wet events will compensate
on sufficiently long timescales (i.e. from year to year,
reduced productivity during the former may be oft-
set by increases during the latter), the prevalence of
bidirectional responses to extreme wetness identified
here, and the conditionality of its sign on a suite of
interacting factors, complicate the likelihood of this
outcome.
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